Abstract
We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using a generic framework we implement a second-order time-integration scheme and a free-surface model in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our results are consistent with existing experimental results by Garstecki et al. [Phys. Rev. Lett. 94, 164501 (2005)], and predict a scaling yet to be observed: the bubble volume scales with the outlet channel radius to the power of 4 and the surface tension. Our axisymmetric simulations further show that the collapse of the gas thread before bubble snap-off is different from the recent experimental results. We suggest that this difference is caused by differences in geometry between experiments and the simulations. ©2006 American Institute of Physics
Original language | English |
---|---|
Journal | Physics of Fluids |
Volume | 18 |
Issue number | 7 |
Pages (from-to) | 077103 |
ISSN | 1070-6631 |
DOIs | |
Publication status | Published - 2006 |