A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics, Columbia University
Corresponding author: Juul, K. J.
Contributors: Juul, K. J., Niordson, C. F., Nielsen, K. L., Kysar, J. W.
Pages: 667-684
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of the Mechanics and Physics of Solids
Volume: 112
ISSN (Print): 0022-5096
Ratings: BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 4.53 SJR 2.057 SNIP 1.798
Web of Science (2018): Impact factor 4.087
Web of Science (2018): Indexed yes
Original language: English
Keywords: Asymptotic fields, Crystal plasticity, Self-similarity, Wedge indentation
Electronic versions:
MARAC_1_s2.0_S0022509617302971_main.pdf. Embargo ended: 29/09/2019
DOIs: 10.1016/j.jmps.2017.09.011
Source: FindIt
Source ID: 2390666788
Research output: Contribution to journal » Journal article – Annual report year: 2018 » Research » peer-review