A novel biomarker of laminin turnover is associated with disease progression and mortality in chronic kidney disease

Signe Holmh Nielsen*, Daniel Guldager Kring Rasmussen, Susanne Brix, Anthony Fenton, Mark Jesky, Charles J. Ferro, Morten Karsdal, Federica Genovese, Paul Cockwell

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

236 Downloads (Pure)

Abstract

Background: Patients with chronic kidney disease (CKD) have increased risk of development of endstage renal disease (ESRD) and early mortality. Fibrosis is the central pathogenic process in CKD and is caused by dysregulated extracellular matrix (ECM) remodeling. The laminin γ1 chain (LAMC1) is a core structural protein present in the basement membrane of several organs, including the kidneys. We hypothesized that dysregulation of LAMC1 remodeling could be associated with a higher risk of adverse clinical outcomes in patients with CKD. '

Methods: A novel immunoassay targeting LG1M, a specific MMP-9-generated neo-epitope fragment of LAMC1, was developed and used to measure the levels of the fragment in urine and serum from 492 patients from the Renal Impairment in Secondary Care (RIISC) study, a prospective cohort of patients with high-risk CKD. Patients were monitored for a median followup time of 3.5 years. Associations between serum and urine LG1M levels and progression of CKD at 12 months were assessed by a multivariable logistic regression model. The association with ESRD or mortality was assessed by Kaplan-Meier survival curves and Cox proportional hazards regression. 

Results: Forty-six (11%) of the 416 patients who reached 12-month follow-up had progression of CKD; during the study follow-up, 125 patients (25.4%) developed ESRD and 71 patients (14.4%) died. Serum and urine levels of LG1M correlated with baseline eGFR (r = -0.43, p<0.0001 and r = -0.17, p = 0.0002, respectively). Serum levels of LG1M were higher in patients with one-year progression of CKD compared to those who did not progress (p<0.01). Baseline serum levels of LG1M were associated with development of ESRD (HR 3.2, 95% CI 1.99-5.2 for patients in the highest LG1M tertile compared to patient in the lowest tertile). Baseline urinary levels of LG1M (uLG1M) were significantly associated with mortality (HR 5.0, 95% CI 2.8-8.9, p<0.0001 for patients in the highest LG1M tertile compared to patients in the lowest tertile). Urine LG1M was retained in the model for prediction of mortality (HR per standard deviation of uLG1M: 1.01, 95% CI 1.00-1.02, p = 0.001). 

Conclusions: LG1M, a marker of basement membrane remodeling, is increased in serum and urine of patients with CKD and levels are associated with one-year disease progression, development of ESRD, and mortality.

Original languageEnglish
Article numbere0204239
JournalPLOS ONE
Volume13
Issue number10
Number of pages13
ISSN1932-6203
DOIs
Publication statusPublished - 2018

Bibliographical note

This is an open access article distributed under the terms of the Creative Commons Attribution License

Fingerprint Dive into the research topics of 'A novel biomarker of laminin turnover is associated with disease progression and mortality in chronic kidney disease'. Together they form a unique fingerprint.

Cite this