A new estimator for vector velocity estimation [medical ultrasonics]

Research output: Contribution to journalJournal articleResearchpeer-review

707 Downloads (Pure)

Abstract

A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new estimator automatically compensates for the axial velocity when determining the transverse velocity. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by averaging RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained for the transverse velocity estimates for a parabolic velocity profile for flow transverse to the ultrasound beam and a SNR of 20 dB using 20 pulse-echo lines. The overall bias in the estimates was -4.3%.
Original languageEnglish
JournalI E E E Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Volume48
Issue number4
Pages (from-to)886-894
ISSN0885-3010
DOIs
Publication statusPublished - 2001

Bibliographical note

Copyright: 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

Cite this