A Multi-Port Bidirectional Power Conversion System for Reversible Solid Oxide Fuel Cell Applications

Reversible Solid Oxide Fuel Cell/Electrolyser Cell (SOFC/EC) technology is an attractive solution for high energy storage system in the utility grid. However, the wide range of voltage and low power of single SOFC/EC stack make it difficult to design the power conversion system for SOFC/EC storage system. In this paper, a new power multiport bidirectional conversion system is proposed to connect multiple SOFC/EC stacks with the utility grid. The converter structure contains a multi-port structure with two conversion stages. The two-stage conversion structure is first analyzed to address the wide-range of SOFC/EC stack’s voltage. The high-step-down CLLC resonant converter is implemented to achieve efficient voltage transformation, and the interleaved buck converter is employed as the second stage to control the voltage of SOFC/EC stack within a wide range. The derivation of the multi-port structure is introduced, and the control strategy of proposed conversion system is also discussed in this paper. The proposed conversion system enables a flexible control for the application of multiple SOFC/EC stacks. The feature of the proposed system is verified by the experiments from a down-scale prototype.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics, Tsinghua University, Shanghai University of Electric Power
Contributors: Lin, X., Sun, K., Lin, J., Zhang, Z., Kong, W.
Pages: 3460-3465
Publication date: 2018

Host publication information
Title of host publication: Proceedings of 2018 International Power Electronics Conference
Publisher: IEEE
ISBN (Print): 9784886864031
Keywords: Multi-port bidirectional power conversion system, Reversible solid oxide fuel cell, CLLC resonant converter, Interleaved buck converter
Electronic versions:
23G4_2.pdf
DOIs:
10.23919/IPEC.2018.8507566
Source: PublicationPreSubmission
Source ID: 149171340
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2018 › Research › peer-review