A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC_{50} values of 15–200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1–80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Chemistry, Department of Chemistry, NanoChemistry, Organic Chemistry, Infection Microbiology, Department of Micro- and Nanotechnology, University of Geneva, IPM-Intelligent Pollutant Monitoring, Technical University of Denmark
Pages: 10635–10643
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Technology
Volume: 50
Issue number: 19
ISSN (Print): 0013-936X
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.26 SJR 2.559 SNIP 1.923
Web of Science (2016): Impact factor 6.198
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
Post_print_incl_supp_info.pdf. Embargo ended: 31/08/2017
DOIs:
10.1021/acs.est.6b01072
Source: FindIt
Source ID: 2342521223
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review