A Monolayer Carbon Nitride on Au(111) with a High Density of Single Co Sites

Jens Jakob Gammelgaard, Zhaozong Sun*, Anders K. Vestergaard, Siqi Zhao, Zheshen Li, Nina Lock, Kim Daasbjerg, Alexander Bagger, Jan Rossmeisl, Jeppe V. Lauritsen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Carbon nitrides that expose atomically dispersed single-atom metals in the form of M-N-C (M = metal) sites are attractive earth-abundant catalyst materials that have been demonstrated in electrocatalytic conversion reactions. The catalytic performance is determined by the abundance of N-doped sites and the type of metal coordination to N, but challenges remain to synthesize pristine carbon nitrides with a high concentration of the most active sites and prepare homogeneously doped materials that allow for in-depth characterization of the M-N-C sites and quantitative evaluation of their catalytic performance. Herein, we have synthesized and characterized a well-defined monolayer carbon nitride phase on a Au(111) surface that exposes an exceedingly high concentration of Co-N4 sites. The crystalline monolayer carbon nitride, whose formation is controlled by an on-surface reaction between Co atoms and melamine on Au(111), is characterized by a dense array of 4- and 6-fold N-terminated pockets, whereof only the 4-fold pocket is found to be holding Co atoms. Through detailed characterization using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory modeling, we determine the atomic structure and chemical state of the carbon nitride network. Furthermore, we show that the monolayer carbon nitride structure is stable and reactive toward the electrocatalytic oxygen reduction reaction in alkaline electrolyte, with a quantitative performance metric that significantly exceeds comparable M-N-C-based catalyst types. The work demonstrates that high-density active catalytic sites can be created using common precursor materials, and the formed networks themselves offer an excellent platform for onward studies addressing the characteristics of M-N-C sites.

Original languageEnglish
JournalACS Nano
Volume17
Pages (from-to)17489−17498
ISSN1936-0851
DOIs
Publication statusPublished - 2023

Keywords

  • Density functional theory
  • On-surface synthesis
  • Oxygen reduction reaction
  • Scanning tunneling microscopy
  • Single-atom catalysis
  • X-ray photoelectron spectroscopy

Fingerprint

Dive into the research topics of 'A Monolayer Carbon Nitride on Au(111) with a High Density of Single Co Sites'. Together they form a unique fingerprint.

Cite this