Abstract
The establishment of a molecular view of heterogeneous catalysis has been hampered for a number of reasons. There are, however, recent developments, which show that we are now on the way towards reaching a molecular-scale picture of the way solids work as catalysts. By a combination of new theoretical methods, detailed experiments on model systems, and synthesis and in situ characterization of nano-structured catalysts, we are witnessing the first examples of complete atomic-scale insight into the structure and mechanism of surface-catalyzed reactions. This insight has already proven its value by enabling a rational design of new catalysts. We illustrate this important development in heterogeneous catalysis by highlighting recent examples of catalyst systems for which it has been possible to achieve such a detailed understanding. In particular, we emphasize examples where this progress has made it possible to propose entirely new catalysts, which have then been proven experimentally to exhibit improved performance in terms of catalytic activity or selectivity.
Original language | English |
---|---|
Journal | Journal of Chemical Physics |
Volume | 128 |
Issue number | 18 |
Pages (from-to) | 182503 |
ISSN | 0021-9606 |
DOIs | |
Publication status | Published - 2008 |
Bibliographical note
Copyright (2008) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Keywords
- ACTIVATION
- METAL-SURFACES
- ELECTRONIC-STRUCTURE
- CO OXIDATION
- TRANSITION
- IN-SITU CHARACTERIZATION
- DISSOCIATION
- STEPS
- AMMONIA-SYNTHESIS
- METHANATION CATALYSTS