Abstract
More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm satellites and alongtrack first differences we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm.
We assess the spatial and temporal model resolution that can be obtained from two years of Swarm satellite data by comparison with other recent models that also include non-Swarm magnetic observations.
We assess the spatial and temporal model resolution that can be obtained from two years of Swarm satellite data by comparison with other recent models that also include non-Swarm magnetic observations.
Original language | English |
---|---|
Publication date | 2016 |
Number of pages | 1 |
Publication status | Published - 2016 |
Event | ESA Living Planet Symposium 2016 - Prague, Czech Republic Duration: 9 May 2016 → 13 May 2016 http://lps16.esa.int/ |
Conference
Conference | ESA Living Planet Symposium 2016 |
---|---|
Country/Territory | Czech Republic |
City | Prague |
Period | 09/05/2016 → 13/05/2016 |
Internet address |