A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

Research output: Contribution to journalJournal articleResearchpeer-review

642 Downloads (Pure)

Abstract

More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East–West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time dependence for n=7–15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.
Original languageEnglish
Article number124
JournalEarth, Planets and Space
Volume68
Issue number1
Number of pages10
ISSN1343-8832
DOIs
Publication statusPublished - 2016

Bibliographical note

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Keywords

  • Geomagnetism
  • Field modeling
  • Swarm satellites

Cite this

@article{43a451a9a01b46b693340aab11a12663,
title = "A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data",
abstract = "More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East–West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time dependence for n=7–15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.",
keywords = "Geomagnetism, Field modeling, Swarm satellites",
author = "Nils Olsen and Chris Finlay and Stavros Kotsiaros and Lars T{\o}ffner-Clausen",
note = "{\circledC} 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.",
year = "2016",
doi = "10.1186/s40623-016-0488-z",
language = "English",
volume = "68",
journal = "Earth, Planets and Space",
issn = "1343-8832",
publisher = "Terra Scientific Publishing Company",
number = "1",

}

A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data. / Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros; Tøffner-Clausen, Lars.

In: Earth, Planets and Space, Vol. 68, No. 1, 124, 2016.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

AU - Olsen, Nils

AU - Finlay, Chris

AU - Kotsiaros, Stavros

AU - Tøffner-Clausen, Lars

N1 - © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

PY - 2016

Y1 - 2016

N2 - More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East–West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time dependence for n=7–15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.

AB - More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East–West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time dependence for n=7–15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.

KW - Geomagnetism

KW - Field modeling

KW - Swarm satellites

U2 - 10.1186/s40623-016-0488-z

DO - 10.1186/s40623-016-0488-z

M3 - Journal article

VL - 68

JO - Earth, Planets and Space

JF - Earth, Planets and Space

SN - 1343-8832

IS - 1

M1 - 124

ER -