Abstract
This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability.
Original language | English |
---|---|
Publication date | 2013 |
Publication status | Published - 2013 |
Event | European Wind Energy Conference & Exhibition 2013 - Vienna, Austria Duration: 4 Feb 2013 → 7 Feb 2013 http://www.ewea.org/annual2013/ |
Conference
Conference | European Wind Energy Conference & Exhibition 2013 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 04/02/2013 → 07/02/2013 |
Internet address |
Keywords
- Aeroelasticity
- Active load control
- Smart rotor