A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering, Image Analysis & Computer Graphics, Lund University, University of Copenhagen, University College London
Corresponding author: Agn, M.
Pages: 220-237
Publication date: 1 May 2019
Peer-reviewed: Yes

Publication information
Journal: Medical Image Analysis
Volume: 54
ISSN (Print): 1361-8415
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Generative probabilistic model, Glioma, Restricted Boltzmann machine, Whole-brain segmentation
Electronic versions:
1_s2.0_S1361841518305103_main.pdf
DOI:
10.1016/j.media.2019.03.005
Source: Scopus
Source ID: 85063664420
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review