A microbial supply chain for production of the anti-cancer drug vinblastine

Jie Zhang, Lea G. Hansen, Olga Gudich, Konrad Viehrig, Lærke M.M. Lassen, Lars Schrübbers, Khem B. Adhikari, Paulina Rubaszka, Elena Carrasquer-Alvarez, Ling Chen, Vasil D’Ambrosio, Beata Lehka, Ahmad K. Haidar, Saranya Nallapareddy, Konstantina Giannakou, Marcos Laloux, Dushica Arsovska, Marcus A.K. Jørgensen, Leanne Jade G. Chan, Mette KristensenHanne B. Christensen, Suresh Sudarsan, Emily A. Stander, Edward Baidoo, Christopher J. Petzold, Tune Wulff, Sarah E. O’Connor, Vincent Courdavault, Michael K. Jensen*, Jay D. Keasling

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

24 Downloads (Pure)

Abstract

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.

Original languageEnglish
JournalNature
Volume609
Issue number7926
Pages (from-to)341-347
Number of pages7
ISSN0028-0836
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'A microbial supply chain for production of the anti-cancer drug vinblastine'. Together they form a unique fingerprint.

Cite this