A method to characterize the roughness of 2-D line features: recrystallization boundaries

A method is presented, which allows quantification of the roughness of nonplanar boundaries of objects for which the neutral plane is not known. The method provides quantitative descriptions of both the local and global characteristics. How the method can be used to estimate the sizes of rough features and local curvatures is also presented. The potential of the method is illustrated by quantification of the roughness of two recrystallization boundaries in a pure Al specimen characterized by scanning electron microscopy.

General information
Publication status: Published
Organisations: Department of Wind Energy, Materials science and characterization, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Contributors: Sun, J., Zhang, Y., Dahl, A. B., Conradsen, K., Juul Jensen, D.
Pages: 313–321
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Microscopy
Volume: 265
Issue number: 3
ISSN (Print): 0022-2720
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.85 SJR 0.728 SNIP 0.94
Web of Science (2017): Impact factor 1.693
Web of Science (2017): Indexed yes
Keywords: Area integral invariant, Boundary, Curvature, Electron backscatter diffraction, Recrystallization, Roughness
DOIs:
10.1111/jmi.12501
Source: Findit
Source ID: 2349352607
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review