A magnetic adsorbent-based process for semi-continuous PEGylation of proteins

A semi-continuous magnetic particle-based process for the controlled attachment of PEG (PEGylation) to proteins is described for the first time. Trypsin and 2 kDa mono-activated PEG were used to systematically develop the steps in the process. Proof of concept was shown in a microfluidics system to minimize reagent consumption. Two streams containing (i) 1.2 g/L trypsin and (ii) 4 g/L magnetic adsorbents derivatized with the reversible affinity ligand benzamidine were pumped into a pipe reactor. At the exit, a third solution of activated PEG (0-40 g/L) was introduced and the solutions immediately fed into a second reactor. Upon exiting, the mixture was combined in a third reactor with a fourth stream of free amine groups to stop the reaction (50 mM lysine). The mixture continued into a high-gradient magnetic separator where magnetic supports, with PEGylated trypsin still attached, were captured and washing and elution steps were subsequently carried out. Analysis of the conjugates (with SDS-PAGE & LC-MS) showed that the extent of PEGylation could be controlled by varying the reaction time or PEG concentration. Furthermore, the PEG-conjugates had higher enzyme activity compared to PEGylation of non-immobilized trypsin.

General information
Publication status: Published
Organisations: Department of Systems Biology, Center for Microbial Biotechnology, Department of Micro- and Nanotechnology
Contributors: Ottow, K. E., Maury, T. L., Hobley, T. J., Lund-Olesen, T., Hansen, M. F.
Pages: 396-409
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Biotechnology Journal
Volume: 6
Issue number: 4
ISSN (Print): 1860-6768
Ratings:
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.94 SJR 0.785 SNIP 0.721
ISI indexed (2011): ISI indexed no
Original language: English
Keywords: Trypsin, Continuous process, Protein modification, High gradient magnetic fishing
DOI: 10.1002/biot.201000360
Source: orbit
Source ID: 277836
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review