A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data

Karen S. Ambrosen*, Martin W. Skjerbæk, Jonathan Foldager, Martin C. Axelsen, Nikolaj Bak, Lars Arvastson, Søren R. Christensen, Louise B. Johansen, Jayachandra M. Raghava, Bob Oranje, Egill Rostrup, Mette Nielsen, Merete Osler, Birgitte Fagerlund, Christos Pantelis, Bruce J. Kinon, Birte Y. Glenthøj, Lars K. Hansen, Bjørn H. Ebdrup

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

39 Downloads (Pure)

Fingerprint

Dive into the research topics of 'A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data'. Together they form a unique fingerprint.

Medicine & Life Sciences