A laser heating facility for energy-dispersive X-ray absorption spectroscopy

A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting.

General information
Publication status: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, European Synchrotron Radiation Facility
Contributors: Kantor, I., Marini, C., Mathon, O., Pascarelli, S.
Number of pages: 13
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Review of Scientific Instruments
Volume: 89
Issue number: 1
Article number: 013111
ISSN (Print): 0034-6748
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 1.74 SJR 0.659 SNIP 1.09
Web of Science (2018): Impact factor 1.587
Web of Science (2018): Indexed yes
Original language: English
Keywords: Laser applications, X-ray absorption spectroscopy, Transition, Diamond-anvil, Absorption spectra
Electronic versions:
DOIs:
10.1063/1.5010345
Source: Findit
Source ID: 2395788832
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review