A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

P. Mantica, C. Challis, A.G. Peeters, D. Strintzi, T. Tala, M. Tsalas, P.C. deVries, B. Baiocchi, M. Baruzzo, J. Bizarro, P. Buratti, J. Citrin, G. Colyer, F. Crisanti, X. Garbet, C. Giroud, N. Hawkes, J. Hobirk, F. Imbeaux, E. Joffrin & 10 others T. Johnson, E. Lerche, J. Mailloux, Volker Naulin, A. Salmi, C. Sozzi, G. Staebler, D. Van Eester, T. Versloot, J. Weiland

    Research output: Contribution to journalJournal articleResearchpeer-review

    159 Downloads (Pure)

    Abstract

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Society
    Original languageEnglish
    JournalPhysical Review Letters
    Volume107
    Issue number13
    Pages (from-to)135004
    ISSN0031-9007
    DOIs
    Publication statusPublished - 2011

    Bibliographical note

    Copyright 2011 American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society

    Keywords

    • Fusion energy

    Cite this

    Mantica, P. ; Challis, C. ; Peeters, A.G. ; Strintzi, D. ; Tala, T. ; Tsalas, M. ; deVries, P.C. ; Baiocchi, B. ; Baruzzo, M. ; Bizarro, J. ; Buratti, P. ; Citrin, J. ; Colyer, G. ; Crisanti, F. ; Garbet, X. ; Giroud, C. ; Hawkes, N. ; Hobirk, J. ; Imbeaux, F. ; Joffrin, E. ; Johnson, T. ; Lerche, E. ; Mailloux, J. ; Naulin, Volker ; Salmi, A. ; Sozzi, C. ; Staebler, G. ; Van Eester, D. ; Versloot, T. ; Weiland, J. / A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear. In: Physical Review Letters. 2011 ; Vol. 107, No. 13. pp. 135004.
    @article{58cb6e30d0954077b1b65cf5255823de,
    title = "A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear",
    abstract = "New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. {\circledC} 2011 American Physical Society",
    keywords = "Fusion energy, Fusionsenergiforskning, Fusionsenergi",
    author = "P. Mantica and C. Challis and A.G. Peeters and D. Strintzi and T. Tala and M. Tsalas and P.C. deVries and B. Baiocchi and M. Baruzzo and J. Bizarro and P. Buratti and J. Citrin and G. Colyer and F. Crisanti and X. Garbet and C. Giroud and N. Hawkes and J. Hobirk and F. Imbeaux and E. Joffrin and T. Johnson and E. Lerche and J. Mailloux and Volker Naulin and A. Salmi and C. Sozzi and G. Staebler and {Van Eester}, D. and T. Versloot and J. Weiland",
    note = "Copyright 2011 American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society",
    year = "2011",
    doi = "10.1103/PhysRevLett.107.135004",
    language = "English",
    volume = "107",
    pages = "135004",
    journal = "Physical Review Letters",
    issn = "0031-9007",
    publisher = "American Physical Society",
    number = "13",

    }

    Mantica, P, Challis, C, Peeters, AG, Strintzi, D, Tala, T, Tsalas, M, deVries, PC, Baiocchi, B, Baruzzo, M, Bizarro, J, Buratti, P, Citrin, J, Colyer, G, Crisanti, F, Garbet, X, Giroud, C, Hawkes, N, Hobirk, J, Imbeaux, F, Joffrin, E, Johnson, T, Lerche, E, Mailloux, J, Naulin, V, Salmi, A, Sozzi, C, Staebler, G, Van Eester, D, Versloot, T & Weiland, J 2011, 'A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear', Physical Review Letters, vol. 107, no. 13, pp. 135004. https://doi.org/10.1103/PhysRevLett.107.135004

    A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear. / Mantica, P.; Challis, C.; Peeters, A.G.; Strintzi, D.; Tala, T.; Tsalas, M.; deVries, P.C.; Baiocchi, B.; Baruzzo, M.; Bizarro, J.; Buratti, P.; Citrin, J.; Colyer, G.; Crisanti, F.; Garbet, X.; Giroud, C.; Hawkes, N.; Hobirk, J.; Imbeaux, F.; Joffrin, E.; Johnson, T.; Lerche, E.; Mailloux, J.; Naulin, Volker; Salmi, A.; Sozzi, C.; Staebler, G.; Van Eester, D.; Versloot, T.; Weiland, J.

    In: Physical Review Letters, Vol. 107, No. 13, 2011, p. 135004.

    Research output: Contribution to journalJournal articleResearchpeer-review

    TY - JOUR

    T1 - A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

    AU - Mantica, P.

    AU - Challis, C.

    AU - Peeters, A.G.

    AU - Strintzi, D.

    AU - Tala, T.

    AU - Tsalas, M.

    AU - deVries, P.C.

    AU - Baiocchi, B.

    AU - Baruzzo, M.

    AU - Bizarro, J.

    AU - Buratti, P.

    AU - Citrin, J.

    AU - Colyer, G.

    AU - Crisanti, F.

    AU - Garbet, X.

    AU - Giroud, C.

    AU - Hawkes, N.

    AU - Hobirk, J.

    AU - Imbeaux, F.

    AU - Joffrin, E.

    AU - Johnson, T.

    AU - Lerche, E.

    AU - Mailloux, J.

    AU - Naulin, Volker

    AU - Salmi, A.

    AU - Sozzi, C.

    AU - Staebler, G.

    AU - Van Eester, D.

    AU - Versloot, T.

    AU - Weiland, J.

    N1 - Copyright 2011 American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society

    PY - 2011

    Y1 - 2011

    N2 - New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Society

    AB - New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Society

    KW - Fusion energy

    KW - Fusionsenergiforskning

    KW - Fusionsenergi

    U2 - 10.1103/PhysRevLett.107.135004

    DO - 10.1103/PhysRevLett.107.135004

    M3 - Journal article

    VL - 107

    SP - 135004

    JO - Physical Review Letters

    JF - Physical Review Letters

    SN - 0031-9007

    IS - 13

    ER -