A human gut microbial gene catalogue established by metagenomic sequencing

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.

General information
Publication status: Published
Organisations: Center for Biological Sequence Analysis, Department of Systems Biology
Pages: 59
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Nature
Volume: 464
Issue number: 7285
ISSN (Print): 0028-0836
Ratings:
BFI (2010): BFI-level 2
Web of Science (2010): Indexed yes
Original language: English
DOIs: 10.1038/nature08821
Source: orbit
Source-ID: 259125
Research output: Contribution to journal › Journal article – Annual report year: 2010 › Research › peer-review