A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high-velocity turbulent fluidized bed cases. The simulation results indicate that the extended EMMS/bubbling drag model is a potential method for coarse-grid simulations of large-scale fluidized beds.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Chinese Academy of Sciences
Pages: 47-57
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Chemical Engineering Journal
Volume: 326
ISSN (Print): 1385-8947
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.01
Web of Science (2017): Impact factor 6.735
Web of Science (2017): Indexed yes
Original language: English
Keywords: CFD, Drag coefficient, EMMS, Fluidized bed, Grid dependence, Simulation
Electronic versions:
Postprint_Hao_Luo.pdf. Embargo ended: 21/05/2019
DOIs:
Source: FindIt
Source ID: 2358780458
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review