Abstract
Multi-stage spray drying is an important and widely used unit operation in the production of food powders. In this paper we develop and present a dynamic model of the complete drying process in a multi-stage spray dryer. The dryer is divided into three stages: The spray stage and two fluid bed stages. Each stage is assumed ideally mixed and described by mass- and energy balances. The model is able to predict the temperature, the residual moisture and the particle size in each stage. Process constraints are also proposed to predict deposits due to stickiness of the powder. The model predictions are compared to datasets gathered at GEA Process Engineering’s test facility. The identified grey-box model parameters are identified from data and the resulting model fits the data well. The complexity of the model has been selected such that it is suitable for development of real-time optimization algorithms in an economic optimizing MPC framework.
Original language | English |
---|---|
Title of host publication | Proceedings of the 10th IFAC International Symposium on Dynamics and Control of Process Systems |
Publisher | Elsevier |
Publication date | 2013 |
Pages | 559-564 |
Article number | FrM2T2.3 |
ISBN (Print) | 9781629937267 |
DOIs | |
Publication status | Published - 2013 |
Event | 10th IFAC International Symposium on Dynamics and Control of Process Systems - Mumbai, India Duration: 18 Dec 2013 → 20 Dec 2013 Conference number: 10 |
Conference
Conference | 10th IFAC International Symposium on Dynamics and Control of Process Systems |
---|---|
Number | 10 |
Country/Territory | India |
City | Mumbai |
Period | 18/12/2013 → 20/12/2013 |