A Graphene-Edge Ferroelectric Molecular Switch

We show that polar molecules (water, ammonia, and nitrogen dioxide) adsorbed solely at the exposed edges of an encapsulated graphene sheet exhibit ferroelectricity, collectively orienting and switching reproducibly between two available states in response to an external electric field. This ferroelectric molecular switching introduces drastic modifications to the graphene bulk conductivity and produces a large and ambipolar charge bistability in micrometer-size graphene devices. This system comprises an experimental realization of envisioned memory capacitative ("memcapacitive") devices whose capacitance is a function of their charging history, here conceived via confined and correlated polar molecules at the one-dimensional edge of a two-dimensional crystal.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanocarbon, Center for Nanostructured Graphene, Theoretical Nanoelectronics, Technical University of Denmark, Polytechnic University of Milan
Corresponding author: Brandbyge, M.
Contributors: Caridad, J. M., Calogero, G., Pedrinazzi, P., Santos, J. E. V. D. S. M., Impellizzeri, A., Gunst, T., Booth, T. J., Sordan, R., Bøggild, P., Brandbyge, M.
Number of pages: 9
Pages: 4675-4683
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Nano letters
Volume: 18
Issue number: 8
ISSN (Print): 1530-6984
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 12.71
Web of Science (2018): Impact factor 12.279
Web of Science (2018): Indexed yes
Original language: English
Keywords: Graphene edges, Polar molecules, Ferroelectricity, Mqemcapacitor, Hysteresis, Molecular switch
DOIs:
10.1021/acs.nanolett.8b00797
Source: FindIt
Source ID: 2437931163
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review