A generator for unique quantum random numbers based on vacuum states

C. Gabriel, C. Wittmann, D. Sych, Ruifang Dong, W. Mauerer, Ulrik Lund Andersen, C. Marquardt, G. Leuchs

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.
Original languageEnglish
JournalNature Photonics
Volume4
Issue number10
Pages (from-to)711-715
ISSN1749-4885
DOIs
Publication statusPublished - 2010

Fingerprint Dive into the research topics of 'A generator for unique quantum random numbers based on vacuum states'. Together they form a unique fingerprint.

Cite this