A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase

Theis Sommer, Kaare Bjerregaard-Andersen, Lalita Uribe, Michael Etzerodt, Gregor Diezemann, Jürgen Gauss, Michele Cascella, J. Preben Morth*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

304 Downloads (Pure)

Abstract

The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+ ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+ dependent amidohydrolases that disfavour Zn2+ as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution. The work illustrates a fundamental difference in the substrate-binding mode between Mn2+ dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+ dependent enzymes.
Original languageEnglish
JournalScientific Reports
Volume8
Issue number1
Number of pages11
ISSN2045-2322
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase'. Together they form a unique fingerprint.

Cite this