A fully robust PARAFAC method for analyzing fluorescence data

Sanne Engelen, Stina Frosch, Bo Jørgensen

Research output: Contribution to journalJournal articleResearchpeer-review


Parallel factor analysis (PARAFAC) is a widespread method for modeling fluorescence data by means of an alternating least squares procedure. Consequently, the PARAFAC estimates are highly influenced by outlying excitation–emission landscapes (EEM) and element-wise outliers, like for example Raman and Rayleigh scatter. Recently, a robust PARAFAC method that circumvents the harmful effects of outlying samples has been developed. For removing the scatter effects on the final PARAFAC model, different techniques exist. Newly, an automated scatter identification tool has been constructed. However, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method is obtained in that way. The method is assessed by means of simulations and a laboratory-made data set.
Original languageEnglish
JournalJournal of Chemometrics
Issue number3-4
Pages (from-to)124-131
Publication statusPublished - 2009


  • outliers
  • fluorescence
  • robust PARAFAC
  • Raman and Rayleigh scatter


Dive into the research topics of 'A fully robust PARAFAC method for analyzing fluorescence data'. Together they form a unique fingerprint.

Cite this