A full-scale wind turbine blade monitoring campaign: detection of damage initiation and progression using medium-frequency active vibrations

Mads Anker Fremmelev*, Purim Ladpli, Esben Orlowitz, Nikolaos Dervilis, Malcolm McGugan, Kim Branner

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

This work is concerned with a structural health monitoring campaign of a 52-m wind turbine blade. Multiple artificial damages are introduced in the blade sequentially, and fatigue testing is conducted with each damage in sequence. Progressive fatigue-driven damage propagation is achieved, enabling investigations concerning detection of initiation and propagation of damage in the blade. Using distributed accelerometers, operational modal analysis is performed to extract the lower-order natural vibration modes of the blade, which are shown to not be sensitive to small damages in the blade. To enable monitoring of small damages, an active vibration monitoring system is used, comprised of an electrodynamic vibration shaker and distributed accelerometers. From the accelerometer data, frequency domain methods are used to extract features. Using the extracted features, outlier detection is performed to investigate changes in the measurements resulting from the introduced damages. Capabilities of using features based on the active vibration data for detection of initiation and progression of damage in a wind turbine blade during fatigue testing are investigated, showing good correlation between the observed damage progression and the calculated changes in the damage index.
Original languageEnglish
JournalStructural Health Monitoring
Number of pages23
ISSN1475-9217
DOIs
Publication statusAccepted/In press - 2023

Keywords

  • Wind turbine blades
  • Damage
  • Operational modal analysis
  • Active vibration input
  • Outlier detection

Fingerprint

Dive into the research topics of 'A full-scale wind turbine blade monitoring campaign: detection of damage initiation and progression using medium-frequency active vibrations'. Together they form a unique fingerprint.

Cite this