A facile molecularly imprinted polymer-based fluorometric assay for detection of histamine

Histamine is a biogenic amine naturally present in many body cells. It is also a contaminant that is mostly found in spoiled food. The consumption of foods containing high levels of histamine may lead to an allergy-like food poisoning. Analytical methods that can routinely screen histamine are thus urgently needed. In this paper, we developed a facile and cost-effective molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify histamine. Histamine-specific MIP nanoparticles (nanoMIPs) were synthesized using a modified solid-phase synthesis method. They were then immobilized in the wells of a microplate to bind the histamine in aqueous samples. After binding, o-phthalaldehyde (OPA) was used to label the bound histamine, which converted the binding events into fluorescent signals. The obtained calibration curve of histamine showed a linear correlation ranging from 1.80 to 44.98 mM with the limit of detection of 1.80 μM. This method was successfully used to detect histamine in spiked diary milk with a recovery rate of more than 85%. 

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, NanoChemistry
Corresponding author: Sun, Y.
Contributors: Feng, X., Ashley, J., Zhou, T., Halder, A., Sun, Y.
Pages: 2365-2372
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: RSC Advances
Volume: 8
Issue number: 5
ISSN (Print): 2046-2069
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.16 SJR 0.807 SNIP 0.785
Web of Science (2018): Impact factor 3.049
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:

10.1039/C7RA11507E
Source: FindIt
Source-ID: 2395311038

Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review