A device for extraction, manipulation and stretching of DNA from single human chromosomes

We describe the structure and operation of a micro/nanofluidic device in which individual metaphase chromosomes can be isolated and processed without being displaced during exchange of reagents. The change in chromosome morphology as a result of introducing protease into the device was observed by time-lapse imaging; pressure-driven flow was then used to shunt the chromosomal DNA package into a nanoslit. A long linear DNA strand (>1.3 Mbp) was seen to stretch out from the DNA package and along the length of the nanoslit. Delivery of DNA in its native metaphase chromosome package as well as the microfluidic environment prevented DNA from shearing and will be important for preparing ultra-long lengths of DNA for nanofluidic analysis.

General information
Publication status: Published
Organisations: NSE-Optofluidics Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Nano-Bio Integrated Systems Group, Biomedical Micro Systems Section, University of Oxford
Contributors: Rasmussen, K. H., Marie, R., Moresco, J. L., Svendsen, W. E., Kristensen, A., Mir, K. U.
Pages: 1431-1433
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Lab on a Chip
Volume: 11
Issue number: 8
ISSN (Print): 1473-0197
Ratings:
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.76 SJR 2.54 SNIP 1.78
Web of Science (2011): Impact factor 5.67
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
Electronic versions:
rsc[1].pdf
DOIs:
10.1039/c0lc00603c
Source: orbit
Source ID: 277034
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review