A Decade of Improvements for Solid Oxide Electrolysis Cells. Long-Term Degradation Rate from 40%/Kh to 0.4 % Kh

Solid oxide electrolysis cells (SOEC) have the potential for efficient large-scale conversion from electrical energy to chemical energy stored in fuels, such as hydrogen or synthetic hydrocarbon fuels by use of well-known catalysis processes. Key issues for the break-through of this technology are to provide inexpensive, reliable, high performing and long-term stable SOEC for stack and system applications. At DTU Energy (formerly Department of Fuel Cells and Solid State Chemistry, Risø National Laboratory), research within SOEC for more than a decade has led to long-term degradation rates on cell level being improved from 40 %/kh to 0.4 %/kh for tests at -1 A/cm² (figure 1). In this paper, we review the key findings and highlight different performance and durability limiting factors that have been discovered, analyzed and addressed over the years to reach the tremendous increase in long-term stability for SOEC as illustrated by the cell tests in figure 1.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Applied Electrochemistry, Ceramic Engineering & Science, Mixed Conductors, Imaging and Structural Analysis, Fundamental Electrochemistry
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Electrochemical Society. Meeting Abstracts (Online)
Volume: MA2016-02
Article number: 2861
ISSN (Print): 2151-2043
Original language: English
URLs:
http://ma.ecsdl.org/content/MA2016-02/39/2861.abstract?sid=a4273c72-e8d4-4f47-9ef2-f42b5e357c5e
Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2016 › Research › peer-review