Abstract
The first local oscillators based on moving magnetic flux quanta in long Josephson junctions are being developed for superconducting integrated quasi-optical SIS receivers. In order to further refine these oscillators one has to understand the complex dynamics of these devices. Since the local tunnel current is one of the most important internal junction parameters which together with the boundary conditions determine the dynamics, it is of vital importance to experimentally determine the current density throughout the entire junction with high spatial resolution. Here we report on measurements on different oscillator samples, performed with a novel Cryogenic Scanning Laser Microscope (CSLM) having a spatial resolution of less than ±2.5 μm over a 500 μm×50 μm wide scanning area in the temperature range 2 K-300 K. Even though the dynamical states are extremely sensitive to external noise this microscope enables us to make stable in-situ measurements on operating Josephson junctions. Recent results are presented and discussed.
Original language | English |
---|---|
Journal | I E E E Transactions on Applied Superconductivity |
Volume | 5 |
Issue number | 2 |
Pages (from-to) | 2747-2750 |
ISSN | 1051-8223 |
DOIs | |
Publication status | Published - 1995 |