Abstract
The stability of offshore structures, such as wind turbine foundations, breakwaters, and immersed tunnels can be strongly affected by the liquefaction and cyclic mobility phenomena in the seabed. Our goal is to develop a numerical code for analysis of these situations. For this purpose, we start by formulating the strong interactions between soil skeleton and the pore fluid via a coupled set of partial differential equations. A single bounding surface soil model capable of simulating the accumulations of pore pressures, strains, dilatancy, and strain „softening‟, is then adopted for quantifying the cyclic soil constitutive relations. To deal with the high non-linearity in the equations, the finite volume (FV) method is proposed for the numerical simulation. The corresponding discretization strategies and solution algorithms, including the conventional segregated method and the more recent block matrix solver, are discussed as well. Overall, investigations in this paper provide a methodology for developing a numerical code simulating liquefaction and cyclic mobility. In future work this will be implemented in practice with the aid of the open source CFD toolbox, OpenFOAM.
Original language | English |
---|---|
Publication date | 2012 |
Number of pages | 16 |
Publication status | Published - 2012 |
Event | The 2012 International Conference on Advances in Coupled Systems Mechanics - Seoul, Korea, Republic of Duration: 26 Aug 2012 → 29 Aug 2012 http://acem12.cti3.com/acsm12.htm |
Conference
Conference | The 2012 International Conference on Advances in Coupled Systems Mechanics |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 26/08/2012 → 29/08/2012 |
Internet address |