The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain with variable depth is solved by a flexible order of accuracy FDM in boundary-fitted curvilinear coordinates. The two solutions are matched along the common boundary of two methods (the BEM boundary) to ensure continuity of value and normal flux. Convergence of the individual methods is shown and the combined solution is tested against several test cases. Results for refraction and diffraction of waves from submerged bottom mounted obstacles compare well with experimental measurements and other computed results from the literature.

General information

Publication status: Published
Organisations: Coastal, Maritime and Structural Engineering, Department of Mechanical Engineering, University of Tehran
Contributors: Naserizadeh, R., Bingham, H. B., Noorzad, A.
Pages: 25-33
Publication date: 2011
Peer-reviewed: Yes

Publication information

Journal: Engineering Analysis with Boundary Elements
Volume: 35
Issue number: 1
ISSN (Print): 0955-7997
Ratings:
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.73 SJR 0.977 SNIP 1.721
Web of Science (2011): Impact factor 1.451
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
Keywords: Modified mild slope equation, Wave amplification, Wave diffraction, Coupled boundary element-finite difference method, Wave refraction
DOIs: 10.1016/j.enganabound.2010.06.020
Source: orbit
Source ID: 269206
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review