A conceptual framework for invasion in microbial communities

A conceptual framework for invasion in microbial communities
There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Water Technologies, Swiss Federal Institute of Aquatic Science and Technology, Newcastle University, King Abdullah University of Science and Technology, Ghent University
Number of pages: 7
Pages: 2773–2779
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: The I S M E Journal
Volume: 10
ISSN (Print): 1751-7362
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.91 SJR 4.938 SNIP 2.261
Web of Science (2016): Impact factor 9.664
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
2016_03_01_revised_MS_final.pdf
DOIs:
10.1038/ismej.2016.75
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review