A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer

As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Colloids and Biological Interfaces, University of Malaya
Contributors: Ranjbar, N., Mehrali, M., Behnia, A., Javadi Pordsari, A., Mehrali, M., Alengaram, U. J., Jumaat, M. Z.
Number of pages: 20
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: P L o S One
Volume: 11
Issue number: 1
Article number: e0147546
ISSN (Print): 1932-6203
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.11 SJR 1.236 SNIP 1.12
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
pone.0147546.pdf
DOIs:
10.1371/journal.pone.0147546

Bibliographical note
This is an open access article distributed under the terms of the Creative Commons Attribution License.
Source: FindIt
Source ID: 2291656151
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review