TY - GEN
T1 - A Comparison of FFD-based Nonrigid Registration and AAMs Applied to Myocardial Perfusion MRI
AU - Ólafsdóttir, Hildur
AU - Stegmann, Mikkel Bille
AU - Ersbøll, Bjarne Kjær
AU - Larsson, Henrik B.W.
PY - 2006
Y1 - 2006
N2 - Little work has been done on comparing the performance of statistical model-based approaches and nonrigid registration algorithms. This paper deals with the qualitative and quantitative comparison of active appearance models (AAMs) and a nonrigid registration algorithm based on free-form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi-slice myocardial perfusion images. The images are acquired by magnetic resonance imaging, from infarct patients. A registration of these sequences is crucial for clinical practice, which currently is subjected to manual labor. In the paper, the pros and cons of the two registration approaches are discussed and qualitative and quantitative comparisons are provided. The quantitative comparison is obtained by an analysis of variance of landmark errors, i.e. point to point and point to curve errors. Even though the FFD-based approach does not include a training phase it gave similar accuracy as the AAMs in terms of point to point errors. For the point to curve errors the AAMs provided higher accuracy. In both cases AAMs gave higher precision due to the training procedure.
AB - Little work has been done on comparing the performance of statistical model-based approaches and nonrigid registration algorithms. This paper deals with the qualitative and quantitative comparison of active appearance models (AAMs) and a nonrigid registration algorithm based on free-form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi-slice myocardial perfusion images. The images are acquired by magnetic resonance imaging, from infarct patients. A registration of these sequences is crucial for clinical practice, which currently is subjected to manual labor. In the paper, the pros and cons of the two registration approaches are discussed and qualitative and quantitative comparisons are provided. The quantitative comparison is obtained by an analysis of variance of landmark errors, i.e. point to point and point to curve errors. Even though the FFD-based approach does not include a training phase it gave similar accuracy as the AAMs in terms of point to point errors. For the point to curve errors the AAMs provided higher accuracy. In both cases AAMs gave higher precision due to the training procedure.
KW - Magnetic Resonance Imaging
KW - Active Appearance Models
KW - Nonrigid registration
KW - Myocardial perfusion
M3 - Article in proceedings
BT - International Symposium on Medical Imaging 2006, San Diego, CA
PB - The International Society for Optical Engineering (SPIE)
ER -