A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching - DTU Orbit (30/09/2019)

A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed between mean OTR values obtained by the fluorescence method and the corresponding values obtained using the OPT-5000 but significantly lower values were measured when using the Mocon Ox-Tran 2/20. In general, oxygen permeability data for the tested films were within the range of values found in the literature; however, in terms of further development, the fluorescence-based technique gave OTR with relatively high standard deviation compared to the commercial methods and equipment modifications to address this issue are considered desirable. Copyright © 2010 John Wiley & Sons, Ltd.

General information
Publication status: Published
Organisations: Solar Energy Programme, Risø National Laboratory for Sustainable Energy
Contributors: Siró, I., Plackett, D., Sommer-Larsen, P.
Pages: 301-315
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Packaging Technology and Science
Volume: 23
Issue number: 6
ISSN (Print): 0894-3214
Ratings:
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.722 SNIP 1.172
Web of Science (2010): Impact factor 1.434
Web of Science (2010): Indexed yes
Original language: English
Keywords: Biopolymers, Solar energy
DOIs:
10.1002/pts.895
Source: orbit
Source ID: 268442
Research output: Contribution to journal › Journal article – Annual report year: 2010 › Research › peer-review