A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy

Alexander Neergaard Olesen*, Matteo Cesari, Julie Anja Engelhard Christensen, Helge Bjarup Dissing Sørensen, Emmanuel Mignot, Poul Jennum

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

281 Downloads (Pure)

Abstract

Objective: To evaluate rapid eye movement (REM) muscular activity in narcolepsy by applying five algorithms to electromyogram (EMG) recordings, and to investigate its value for narcolepsy diagnosis. Patients/methods: A modified version of phasic EMG metric (mPEM), muscle activity index (MAI), REM atonia index (RAI), supra-threshold REM EMG activit ymetric (STREAM), and Frandsen method (FR) were calculated from polysomnography recordings of 20 healthy controls, 18 clinic controls (subjects suspected with narcolepsy but finally diagnosed without any sleep abnormality), 16 narcolepsy type 1 without REM sleep behavior disorder (RBD), 9 narcolepsy type 1 with RBD, and 18 narcolepsy type 2. Diagnostic value of metrics in differentiating between groups was quantified by area under the receiver operating characteristic curve (AUC). Correlations among the metrics and cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) values were calculated using linear models. Results: All metrics excluding STREAM found significantly higher muscular activity in narcolepsy 1 cases versus controls (p<0.05). Moreover, RAI showed high sensitivity in the detection of RBD. The mPEM achieved the highest AUC in differentiating healthy controls from narcoleptic subjects. The RAI best differentiated between narcolepsy 1 and 2. Lower CSF-hcrt-1 values correlated with high muscular activity quantified by mPEM, sMAI, lMAI, PEM and FR (p<0.05). Conclusions: This automatic analysis showed higher number of muscle activations in narcolepsy 1 compared to controls. This finding might play a supportive role in diagnosing narcolepsy and in discriminating narcolepsy subtypes. Moreover, the negative correlation between CSF-hcrt-1 level and REM muscular activity supported a role for hypocretin in the control of motor tone during REM sleep.
Original languageEnglish
JournalSleep Medicine
Volume44
Pages (from-to)97-105
ISSN1389-9457
DOIs
Publication statusPublished - 2018

Keywords

  • Computer-assisted analysis
  • Electromyogram (EMG)
  • Narcolepsy
  • Polysomnography
  • Rapid eye movement (REM) sleep behavior disorder
  • REM sleep without atonia

Fingerprint Dive into the research topics of 'A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy'. Together they form a unique fingerprint.

Cite this