TY - JOUR
T1 - A comparative assessment of treatment methods to release ferulic and p-cumaric acids from Brewer’s Spent Grains
AU - Bucci, P.
AU - Casas, A.
AU - Martins, P.
AU - Meyer, A.
AU - Cantero, D.
AU - Muñoz, R.
PY - 2024
Y1 - 2024
N2 - Brewers’ spent grain (BSG) is the main byproduct from the brewing industry, which accounts for 85 % of the total waste generated during beer production. This lignocellulosic material is traditionally used as livestock feed and sold at a low price. However, BSG can be used as a low-cost feedstock for the production of bioactive molecules and chemicals precursors, upgrading the value of this byproduct. In this context, BSG is a promising feedstock for the extraction of antioxidants like ferulic acid (FA) and p-coumaric acid (p-Cu). The effectiveness of three hydrolysis treatments were evaluated for the extraction of FA and p-Cu from BSG, namely enzymatic (based on the synergistic cooperation between a feruloyl esterase and an endo-1,4-β-xylanase), alkaline and hydrothermal. The hydrothermal treatment produced the highest extraction yields (7.2 g/kgBSG and 1.4 g/kgBSG for FA and p-Cu, respectively) in a short extraction time (an hour). On the other hand, enzymatic hydrolysis extracted 4.3 g/kgBSG for FA and negligible yields for p-Cu in 4 h of incubation at 25 °C. Yields of 5.5 g/kgBSG for FA and 0.6 g/kgBSG for p-Cu were obtained in more than 5 h of alkaline treatment at 120 °C. The mass and energy balances revealed the high dependence of the operating costs on the concentration of BSG used during the extraction process, with costs of 34.5 €, 6607 € and 205.5 € per kg of FA for the chemical, enzymatic and hydrothermal extraction methods at 100 kg BSG/m3.
AB - Brewers’ spent grain (BSG) is the main byproduct from the brewing industry, which accounts for 85 % of the total waste generated during beer production. This lignocellulosic material is traditionally used as livestock feed and sold at a low price. However, BSG can be used as a low-cost feedstock for the production of bioactive molecules and chemicals precursors, upgrading the value of this byproduct. In this context, BSG is a promising feedstock for the extraction of antioxidants like ferulic acid (FA) and p-coumaric acid (p-Cu). The effectiveness of three hydrolysis treatments were evaluated for the extraction of FA and p-Cu from BSG, namely enzymatic (based on the synergistic cooperation between a feruloyl esterase and an endo-1,4-β-xylanase), alkaline and hydrothermal. The hydrothermal treatment produced the highest extraction yields (7.2 g/kgBSG and 1.4 g/kgBSG for FA and p-Cu, respectively) in a short extraction time (an hour). On the other hand, enzymatic hydrolysis extracted 4.3 g/kgBSG for FA and negligible yields for p-Cu in 4 h of incubation at 25 °C. Yields of 5.5 g/kgBSG for FA and 0.6 g/kgBSG for p-Cu were obtained in more than 5 h of alkaline treatment at 120 °C. The mass and energy balances revealed the high dependence of the operating costs on the concentration of BSG used during the extraction process, with costs of 34.5 €, 6607 € and 205.5 € per kg of FA for the chemical, enzymatic and hydrothermal extraction methods at 100 kg BSG/m3.
KW - Brewer’s spent grain
KW - Chemical treatment
KW - Coumaric acid
KW - Enzymatic treatment
KW - Ferulic acid
KW - Hydrothermal treatment
U2 - 10.1016/j.wasman.2024.07.025
DO - 10.1016/j.wasman.2024.07.025
M3 - Journal article
C2 - 39098271
SN - 0956-053X
VL - 188
SP - 39
EP - 47
JO - Waste Management
JF - Waste Management
ER -