A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models implemented on the SpiNNaker platform, showing promising performance and robustness results.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Centre for Playware, Automation and Control, Copenhagen Center for Health Technology
Contributors: Baira Ojeda, I., Tolu, S., Pacheco, M., Christensen, D. J., Lund, H. H.
Number of pages: 4
Publication date: 2017

Host publication information
Title of host publication: Proceedings of the ICAROB International Conference on Artificial Life and Robotics 2017
Publisher: ALife Robotics Co, Ltd.
ISBN (Electronic): 9784990835026
Keywords: Motor control, Cerebellum, Machine learning, Modular robot, Internal model, Adaptive behavior
Source: PublicationPreSubmission
Source ID: 128902220
Research output: Chapter in Book/Report/Conference proceeding > Article in proceedings – Annual report year: 2017 > Research > peer-review