A case study on collaboration within multidisciplinary teamwork. - DTU Orbit (18/11/2019)

A case study on collaboration within multidisciplinary teamwork.
Collaboration within the building process has always been difficult. Additionally the new demands on functionality such as energy and cost efficiency change the roles within the teams of engineers and architects, engaged in building design and generate a need of new work methods within the process. This calls for employees who are experienced in collaborating in interdisciplinary teams. To fulfil this demand a multidisciplinary course in “Advanced building design” has been developed at the Technical University of Denmark. The goal of the course is to provide training in transprofessionalism and teamwork at the final stage of the engineering education. The course was held by a multidisciplinary team of teachers for 9 multidisciplinary teams of students. The team of teachers and the student teams had similar working conditions. These teams were subject of investigation on collaboration and transprofessionalism. 32 students and 7 teachers answered a questionnaire leading to the following findings. Collaboration was improving during the course. Other than in traditional building teams we could see that the students placed the role as a designer only in a few cases were perceived the team leader and they appeared to be well integrated. The team-structure was generally flat and decisions were mostly made in consensus. As planned the level of technical specialization within the course was low, and the course applied previously learned knowledge, and was considered a good supplement to previous courses. The transprofessionalism during the course was appreciated but it was also described as a challenge.

General information
Publication status: Published
Organisations: Section for Building Design, Department of Civil Engineering
Contributors: Dederichs, A., Karlshej, J., Hertz, K. D.
Pages: 907-912
Publication date: 2010

Host publication information
Title of host publication: Structures and Architecture
Publisher: CRC Press, Taylor & Francis Group
Source: orbit
Source ID: 257193
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2010 ›
Research › peer-review