A brute-force spectral approach for wave estimation using measured vessel motions

The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach, and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave spectrum estimates can be obtained for all wave directions in short-crested waves, taking the wave system to be composed by both wind generated sea and swell. Furthermore, the procedure is tested using full-scale motion data obtained from sea trials. Good wave estimations are achieved as compared to corresponding results from a free-floating (classical) wave buoy.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Norwegian University of Science and Technology
Corresponding author: Nielsen, U. D.
Contributors: Nielsen, U. D., Brodtkorb, A. H., Sørensen, A. J.
Pages: 101-121
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Marine Structures
Volume: 60
ISSN (Print): 0951-8339
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.58 SJR 1.477 SNIP 2.86
Web of Science (2018): Impact factor 2.865
Web of Science (2018): Indexed yes
Original language: English
Keywords: Doppler shift, Sea trials data, Spectrum transformation, Wave buoy analogy, Wave spectrum estimation, Wave-induced vessel responses
DOIs:
10.1016/j.marstruc.2018.03.011
Source: FindIt
Source ID: 2398575616
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review