A Branch-and-Price algorithm for railway rolling stock rescheduling

How to best reschedule their fleet of rolling stock units during a disruption is an optimization problem regularly faced by railway operators. Despite the problem's high complexity, it is still usually solved manually. In this paper we propose a path based mathematical formulation and solve it using a Branch-and-Price algorithm. We demonstrate that, unlike flow based approaches, our formulation is more easily extended to handle certain families of constraints, such as train unit maintenance restrictions. The proposed algorithm is benchmarked on several real-life instances provided by the suburban railway operator in Copenhagen, DSB S-tog. When used in combination with a lower bound method taken from the literature we show that near-optimal solutions to this rescheduling problem can be found within a few seconds. Furthermore, we show that the proposed methodology can be used, with minor modification, on a tactical planning level, where it produces near-optimal rolling stock schedules in minutes of CPU time.

General information
Publication status: Published
Contributors: Lusby, R. M., Haahr, J. T., Larsen, J., Pisinger, D.
Pages: 228-250
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part B: Methodological
Volume: 99
ISSN (Print): 0191-2615
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.09 SJR 3.109 SNIP 2.681
Web of Science (2017): Impact factor 4.081
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
TRB23.pdf. Embargo ended: 19/03/2019
DOIs:
10.1016/j.trb.2017.03.003
Source: PublicationPreSubmission
Source-ID: 130629313
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review