A Bayesian Additive Model for Understanding Public Transport Usage in Special Events

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Documents

DOI

View graph of relations

Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult to predict, even when organisers and transportation operators coordinate. The problem highly increases when several events happen concurrently. To solve these problems, costly processes, heavily reliant on manual search and personal experience, are usual practice in large cities like Singapore, London or Tokyo. This paper presents a Bayesian additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total number of public transportation trips to the special event areas, thereby contributing to a more adaptive transportation system. Furthermore, for multiple concurrent event scenarios, the proposed algorithm is able to disaggregate gross trip counts into their most likely components related to specific events and routine behavior. Using real data from Singapore, we show that the presented model outperforms the best baseline model by up to 26 percent in R-2 and also has explanatory power for its individual components.
Original languageEnglish
JournalI E E E Transactions on Pattern Analysis and Machine Intelligence
Volume39
Issue number11
Pages (from-to)2113-2126
ISSN0162-8828
DOIs
Publication statusPublished - 2017
CitationsWeb of Science® Times Cited: No match on DOI

Download statistics

No data available

ID: 139266557