Abstract
This paper presents the design and implementation of a resonant LED driver. The driver structure comprises a charge-pump-based power factor correction (PFC) converter and a class-DE dc-dc converter. The PFC converter employs a charge-pump circuit that achieves PFC inherently. The class-DE converter comprises a series-resonant tank and a high-frequency transformer. Both converters share the same half-bridge and gate-driving circuit, resulting in an integrated-stage architecture. The inherent PFC operation limits the controller responsibility to the regulation of the output current. The overall converter operates with zero-voltage switching (ZVS) across the entire load range, allowing for increased switching frequencies with reduced switching losses. A 1-MHz prototype employing wide bandgap (WBG) switching devices is built and tested. The prototype delivers up to 42 W of output power, with a power density of 1.8 W/cm3. A power factor of 0.99 and a total harmonic distortion (THD) of 6 % are achieved, with an efficiency of 90 % at full load. The input current harmonic magnitudes are well-within the IEC 61000-3-2 standard limits for class-C devices. Burst-mode (on/off) modulation is used for output current regulation between 20 and 900 mA for dimming functionality.
Original language | English |
---|---|
Journal | IEEE Journal of Emerging and Selected Topics in Power Electronics |
Volume | 9 |
Issue number | 5 |
Pages (from-to) | 5838 - 5850 |
ISSN | 2168-6777 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- LED drivers
- Power factor correction
- Resonant power conversion
- Charge pump
- Zero-voltage switching