3D Printed Stackable Titer Plate Inserts Supporting Three Interconnected Tissue Models for Drug Transport Studies

Morten Leth Jepsen, Andreas Willumsen, Chiara Mazzoni, Anja Boisen, Line Hagner Nielsen, Martin Dufva*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Current in vitro drug screening methods often rely on single-cell models and are therefore imprecise in predicting drug absorption, distribution, metabolism, excretion, and toxicity. This study presents a method to fabricate 3D printed inserts that are compatible with commercially available titer plates. Hydrogels can be casted into the inserts and cells can be cultured either in or on the hydrogels. Once individual cell cultures are fully differentiated, the three different cell cultures are stacked on top of each other for biological experiments. To show the possibilities of this approach, three tissue models representing the first pass metabolism is used. The three tissue models are based on gelatin hydrogels and Caco-2, HUVEC, and HepG2 cells to simulate the small intestine, vascular endothelium, and liver, respectively. The device is simple to fabricate, user friendly, and an alternative to microfluidic-based organ on a chip systems. The presented first pass metabolism study allows for gaining information on drug absorption, distribution, metabolism, and, in the future, excretion in one compact device complying the micro titer plate format.
Original languageEnglish
Article number1900289
JournalAdvanced Biosystems
Volume4
Issue number7
Number of pages11
ISSN2366-7478
DOIs
Publication statusPublished - 2020

Cite this