3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia

Nasim Golafshan, Koen Willemsen, Firoz Babu Kadumudi, Elke Vorndran, Alireza Dolatshahi-Pirouz, Harrie Weinans, Bart C.H. van der Wal, Jos Malda, Miguel Castilho*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

11 Downloads (Pure)

Abstract

Osteoarthritis of the hip is a painful and debilitating condition commonly occurring in humans and dogs. One of the main causes that leads to hip osteoarthritis is hip dysplasia. Although the current surgical methods to correct dysplasia work satisfactorily in many circumstances, these are associated with serious complications, tissue resorption, and degeneration. In this study, a one-step fabrication of a regenerative hip implant with a patient-specific design and load-bearing properties is reported. The regenerative hip implant is fabricated based on patient imaging files and by an extrusion assisted 3D printing process using a flexible, bone-inducing biomaterial. The novel implant can be fixed with metallic screws to host bone and can be loaded up to physiological loads without signs of critical permanent deformation or failure. Moreover, after exposing the hip implant to accelerated in vitro degradation, it is confirmed that it is still able to support physiological loads even after losing ≈40% of its initial mass. In addition, the osteopromotive properties of the novel hip implant is demonstrated as shown by an increased expression of osteonectin and osteocalcin by cultured human mesenchymal stem cells after 21 days. Overall, the proposed hip implant provides an innovative regenerative and mechanically stable solution for hip dysplasia treatment.

Original languageEnglish
Article number2101051
JournalAdvanced Healthcare Materials
Volume10
Issue number21
ISSN2192-2640
DOIs
Publication statusPublished - 2021

Bibliographical note

Funding Information:
The authors gratefully thank the following agencies for their financial support: the strategic alliance University Medical Center Utrecht‐Technical University Eindhoven, the Gravitation Program “Materials Driven Regeneration”, funded by the Netherlands Organization for Scientific Research (024.003.013), and the partners of Regenerative Medicine Crossing Borders (RegmedXB ) a public‐private partnership that uses regenerative medicine strategies to cure common chronic diseases. This collaboration project is financed by the Dutch Ministry of Economic Affairs by means of the PPP Allowance made available by the Top Sector Life Sciences & Health to stimulate public‐private partnerships. The authors thank Morteza Alehosseini for all support and discussions with the biomaterial ink material characterization.

Keywords

  • 3D printing
  • Bone implants
  • Bone regeneration
  • Hip dysplasia
  • Load bearing
  • Patient-specific implants

Fingerprint

Dive into the research topics of '3D-Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia'. Together they form a unique fingerprint.

Cite this