3D mechanical measurements with an atomic force microscope on 1D structures.

We have developed a simple method to characterize the mechanical properties of three dimensional nanostructures, such as nanorods standing up from a substrate. With an atomic force microscope the cantilever probe is used to deflect a horizontally aligned nanorod at different positions along the nanorod, using the apex of the cantilever itself rather than the tip normally used for probing surfaces. This enables accurate determination of nanostructures’ spring constant. From these measurements, Young's modulus is found on many individual nanorods with different geometrical and material structures in a short time. Based on this method Young's modulus of carbon nanofibers and epitaxial grown III-V nanowires has been determined.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Kallesøe, C., Larsen, M. B. B. S., Bøggild, P., Mølhave, K.
Pages: 023704-01 - 023704-07
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Review of Scientific Instruments
Volume: 83
Issue number: 2
ISSN (Print): 0034-6748
Ratings:
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.45 SJR 1.017 SNIP 1.29
Web of Science (2012): Impact factor 1.602
ISI indexed (2012): ISI indexed yes
Keywords: Carbon Nanotubes, NANOMECHANICAL RESONATORS, Elasticity, Strength
Electronic versions:
3D mechanical measurements with an atomic force microscope on 1D structures

DOIs:
10.1063/1.3681784
Source: dtu
Source ID: n:oai:DTIC-ART:pubmed/363626793::15519
Research output: Contribution to journal Journal article – Annual report year: 2012 Research peer-review