A solar park based on polymer solar cells is described and analyzed with respect to performance, practicality, installation speed, and energy payback time. It is found that a high voltage installation where solar cells are all printed in series enables an installation rate in Watts installed per minute that far exceed any other PV technology in existence. The energy payback time for the practical installation of polymer solar cell foil on a wooden 250 square meter platform in its present form is 277 days when operated in Denmark and 180 days when operated in southern Spain. The installation and de-installation rate is above 100 m min$^{-1}$, which, with the present performance and web width, implies installation of >200 W min$^{-1}$. In comparison, this also exceeds the overall manufacturing speed of the polymer solar cell foil with a width of 305 mm which is currently 1 m min$^{-1}$ for complete encapsulated and tested foil. It is also significant that simultaneous installation and de-installation which enables efficient schemes for decommissioning and recycling is possible. It is highlighted where research efforts should most rationally be invested in order to make grid electricity from OPV a reality (and it is within reach).