• Fysikvej, 310, 240

    2800 Kgs. Lyngby


If you made any changes in Pure these will be visible here soon.

Personal profile


Nini Pryds is a Professor and head the research section ‘Functional Oxide Materials’ at the Department of Energy Conversion and Storage, The Technical University of Denmark (DTU), where he leads a group of 25+ researchers working in the field of memristors, piezoelectricity, thermoelectricity, electrostriction and functional oxide thin films. He has made major contributions in emerging disciplines such as Nanoionics and Iontronics, dealing with the design and control of interface-related phenomena in fast ionic and electronic conductors.

My work combining both physics and chemistry to create new types of electronic state of matter in oxide interfaces is essential, and I played a central role in the field. My contributions can be grouped in three different areas with selected examples: 

(1)   Discovery of quantum phenomena in extreme high mobility system by heterointerface design and modulation doping: (a) My group was the first to discover the modulation-doping at complex oxide interfaces by charge transfer [Nat. Mat. 14, 801 (2015)]. This enhances the electron mobility of oxide interface more than 100 times and results in the first observation of quantum Hall effect at 3d oxide interfaces [Phys. Rev. Letters 117, 096804 (2016)]. (b) We were also the first to discover a new type of 2DEG at spinel/perovskite oxide interfaces with world record high mobility [Nat. Comm. 4, 1371 (2013)]. The same samples also exhibit the largest ever discovered positive magnetoresistance of 80,000% [sub. Nat. Phys. 2019]. (c) The first discovery of metallic and insulating interfaces controlled by chemical redox reactions at oxide interfaces [Nano Letters11, 3774-3778 (2011)].

(2)   Stability enhancement in ionic conductors by coherent interface design: Many researchers have tried repeatedly for many years to extend the stability of the δ-Bismuth oxide with partial success. I took another innovative path and stabilized the highly unstable δ-Bi2O3 by making atomically thin multilayered structure of Er2O3-stabilized δ-Bi2O3 (ESB) and Gadolinium oxide (Gd2O3) doped Ceria (CeO2) (GDC) achieving several orders of magnitude higher ion conductivity than all previous known ion conductors [Nat. Mat. 14, 500–504 (2015)]. This suggests a new strategy to design new materials [Oxide Roadmap: App. Sur. Sci. 482 (2019) 1–93].

(3)   Mechanically tunable magnetism: A remarkable discovery that we made recently is that a mechanically tunable magnetic state coexists with high electron mobility [Nat. Phys. 15, 269–274 (2019)]. By using a tip of scanning SQUID microscopy to gently press down on the surface of the SrTiO3 and create a local force, he could change the configuration of the magnetic stripes at the surface drastically. The results point towards a delicate balance between the unperturbed magnetic order existing in the absence of stress and a ferromagnetic order induced by the stress. It is these latter results that I build upon in the present proposal and to a recent review paper on this topic. 

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy

Education/Academic qualification


External positions

Editor Applied Surface Science

Editorial Advisory Board Members, APL-Materials


  • User defined:


Dive into the research topics where Nini Pryds is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or