Chip-size-packaged silicon microphones [for hearing instruments]
The first results of silicon microphones that are completely batch-packaged and integrated with signal conditioning circuitry in a chip stack are discussed. The chip stack is designed to be directly mounted into a system, such as a hearing instrument, without further single-chip handling or wire bonding. The devices are fully encapsulated and provided with a well-determined interface to the environment. The integrated microphones operate at a bias of 1.5 V and are expected to reach a sensitivity of 5 mV/Pa, an A-weighted equivalent input noise of 24 dB sound pressure level, and a power consumption of about 50 μW in the near future, thereby living up to the tight specifications of microphones for hearing instruments. Other potential applications include mobile phones, headsets, and wearable computers, in which space is constrained.

Solid state silicon based condenser microphone for hearing aid, has transducer chip and IC chip between intermediate chip and openings on both sides of intermediate chip, to allow sound towards diaphragm
NOVELTY - A silicon transducer chip (1) has parallel backplate and movable diaphragm (12) and forms an electrical capacitor. The chip and electronic circuit chip (3) are provided on either sides of intermediate chip (2). The chip (2) has openings (4, 10) between two sides of the chip, to allow sound towards diaphragm. Surface of the chip (2) has electrical conductors (14) to connect chip with IC chip (3). USE - For use in miniature electroacoustic devices such as hearing aid. ADVANTAGE - Since sound inlet is covered by filter, dust, moisture and other impurities do not obstruct interior and sound inlet of microphone. External electrical connection can be made economically reliable and the thermal stress is avoided with the small size solid state silicon based condenser microphone.

Silicon microphones - a Danish perspective
Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities
of silicon, as well as the challenges and expectations, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Bouwstra, S., Storgaard-Larsen, T., Scheeper, P., Gulløv, J., Bay, J., Müllenborn, M., Rombach, P.
Pages: 64-68
Publication date: 1998
Peer-reviewed: Yes

Publication information
Journal: Journal of Micromechanics and Microengineering
Volume: 8
Issue number: 2
ISSN (Print): 0960-1317
Original language: English
DOIs:
10.1088/0960-1317/8/2/005
Source: orbit
Source ID: 170001
Research output: Contribution to journal › Conference article – Annual report year: 1998 › Research › peer-review

Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon
We present microfabrication and characterization of truly three-dimensional (3-D) diffuser/nozzle structures in silicon. Chemical vapor deposition (CVD), reactive ion etching (RIE), and laser-assisted etching are used to etch flow chambers and diffuser/nozzle elements. The flow behavior of the fabricated elements and the dependence of diffuser/nozzle efficiency on structure geometry has been investigated. The large freedom of 3-D micromachining combined with rapid prototyping allows one to characterize and optimize diffuser/nozzle structures.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Heschel, M., Müllenborn, M., Bouwstra, S.
Pages: 41-47
Publication date: 1997
Peer-reviewed: Yes

Publication information
Journal: IEEE Journal of Microelectromechanical Systems
Volume: 6
ISSN (Print): 1057-7157
Original language: English
Electronic versions:
Heschel.pdf
DOIs:
10.1109/84.557529

Bibliographical note
Copyright: 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
Source: orbit
Source ID: 167911
Research output: Contribution to journal › Journal article – Annual report year: 1997 › Research › peer-review

Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes
Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics.
Fabrication and characterization of truly three-dimensional diffuser/nozzle microstructures in silicon

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Birkelund, K., Mullenborn, M., Grey, H. F. D., Jensen, F., Madsen, S.
Pages: 555-560
Publication date: 1996
Peer-reviewed: Yes

Publication information
Journal: Superlattices and Microstruc.
Volume: 20
Original language: English
Source: orbit
Source ID: 166718
Research output: Contribution to journal › Journal article – Annual report year: 1996 › Research › peer-review

Fast three-dimensional laser micromachining of silicon for microsystems

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Heschel, M., Mullenborn, M., Bouwstra, S.
Pages: 72-75
Publication date: 1996
Peer-reviewed: Yes

Publication information
Host publication information
Title of host publication: Actuator 96
Place of publication: Bremen
Publisher: Axon Technologie Consult GmbH
Source: orbit
Source ID: 166738
Research output: Chapter in Book/Report/Conference proceeding › Book chapter – Annual report year: 1996 › Research › peer-review

Laser direct etching of silicon on oxide for rapid prototyping

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Mullenborn, M., Heschel, M., Larsen, U. D., Dirac, P. A. H., Bouwstra, S.
Pages: 49-51
Publication date: 1996
Peer-reviewed: Yes

Publication information
Journal: Journal of Micromechanics and Microengineering
Laser direct writing of oxide structures on hydrogen-passivated silicon surfaces

A focused laser beam has been used to induce oxidation of hydrogen-passivated silicon. The scanning laser beam removes the hydrogen passivation locally from the silicon surface, which immediately oxidizes in air. The process has been studied as a function of power density and excitation wavelength on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer-scale patterns can be generated by laser direct oxidation and complemented with nanometer resolution by scanning probe techniques. The combined micro- and nanoscale pattern can be transferred to the silicon in a single etching step by either wet or dry etching techniques. (C) 1996 American Institute of Physics.

Nanoscale structures by laser direct writing in silicon

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Dirac, P. A. H., Mullenborn, M., Petersen, J. W.
Pages: 43-49
Publication date: 1996
Peer-reviewed: Yes

Bibliographical note
Copyright (1996) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Nanoscale structures by laser direct writing in silicon
Nanostructuring of silicon by laser direct writing

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Mullenborn, M., Jauho, A. (ed.)
Pages: 85-104
Publication date: 1996

Host publication information
Title of host publication: Nanostructuring of silicon by laser direct writing
Publisher: Kluwer Academic
Source: orbit
Source ID: 166742

On the flow behavior of diffuser/nozzle elements microfabricated in silicon

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Heschel, M., Svanebjerg, S., Mullenborn, M., Bouwstra, S.
Publication date: 1996

Host publication information
Title of host publication: MSW'96: Proc. of the 2nd. Micro Structure Workshop
Source: orbit
Source ID: 166739

Optical near-field lithography on hydrogen-passivated silicon surfaces

We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology
Contributors: Madsen, S., Müllenborn, M., Birkelund, K., Grey, F.
Pages: 544-546
Publication date: 1996
Peer-reviewed: Yes

Publication information
Volume: 69
Issue number: 4
ISSN (Print): 0003-6951
Original language: English
Keywords: SPECTROSCOPY, FABRICATION, NANOSTRUCTURES, OXIDATION, ATOMIC-FORCE MICROSCOPE, SCANNING TUNNELING MICROSCOPE
Electronic versions:
Steen.pdf
DOIs:
10.1063/1.117781
URLs:
http://link.aip.org/link/?APPLAB/69/544/1
Silicon nanostructures produced by laser direct etching

A laser direct-write process has been applied to structure silicon on a nanometer scale. In this process, a silicon substrate, placed in a chlorine ambience, is locally heated above its melting point by a continuous-wave laser and translated by high-resolution direct-current motor stages. Only the molten silicon reacts spontaneously with the molecular chlorine, resulting in trenches with the width of the laser-generated melt. Trenches have been etched with a width of less than 70 nm. To explain the functional dependence of the melt size on absorbed power, the calculations based on a two-phase steady state heat model are presented, taking the temperature-dependent thermal conductivities and optical parameters into account. ©1995 American Institute of Physics.

Sub-band-gap laser micromachining of lithium niobate

Laser processing of insulators and semiconductors is usually realized using photon energies exceeding the band-gap energy. This makes laser processing of insulators difficult since high photon energies typically require either a pulsed laser or a frequency-doubled continuous-wave laser. A new method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 10^6 µm^3/s. This enables fast micromachining of small piezoelectric structures, or simple etching of grooves for precision positioning of optical fibers. ©1995 American Institute of Physics.